Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

trans-Diaquadichloridobis(N, N-dimethyl-formamide- κ O)manganese(II)

Ilya M. Sluch and LeGrande M. Slaughter*

Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA Correspondence e-mail: Ims@chem.okstate.edu

Received 8 November 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.001 \AA$; R factor $=0.017 ; w R$ factor $=0.051$; data-to-parameter ratio $=30.8$.

The title complex, $\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, was obtained upon dissolution of a dimethoxyethane adduct of MnCl_{2} in N, N-dimethylformamide. In the crystal structure, each $\mathrm{Mn}^{\mathrm{II}}$ ion is located on a crystallographic inversion center, coordinated by two $\mathrm{Cl}[\mathrm{Mn}-\mathrm{Cl}=2.53423(17) \AA]$ and four $\mathrm{O}[\mathrm{Mn}-\mathrm{O}=2.1847$ (5) and 2.2199 (6) \AA] atoms in a distorted octahedral geometry. The complexes are linked into chains by complementary pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. Adjacent chains pack via weaker $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions or by interdigitation of $-\mathrm{NMe}_{2}$ groups. The H atoms of two symmetryrelated methyl groups are disordered between two orientations in a 0.51:0.49 ratio.

Related literature

For the initial synthesis and characterization of the title compound and its precursor, see: Kim et al. (1981, 1985); Fowles et al. (1969). For recent examples of related coordination polymers, see: Chan et al. (2007); Deng et al. (2007).

Experimental

Crystal data

$\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$b=6.8021(1) \AA$
$M_{r}=308.06$	$c=8.7056(1) \AA$
Triclinic, $P \overline{1}$	$\alpha=110.539(1)^{\circ}$
$a=6.1224(1) \AA$	$\beta=105.431(1)^{\circ}$

$\gamma=94.732$ (1)
$\mu=1.44 \mathrm{~mm}^{-1}$
$V=320.99$ (1) \AA^{3}
$Z=1$
Mo $K \alpha$ radiation

Data collection
Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.534, T_{\text {max }}=0.746$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.051$
$S=1.06$
2435 reflections
79 parameters
2 restraints
$T=298$ (2) K
$0.48 \times 0.25 \times 0.20 \mathrm{~mm}$

10584 measured reflections

2435 independent reflections
2300 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$ independent and constrained refinement
$\Delta \rho_{\text {max }}=0.28$ e \AA^{-3}
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H11 $\cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.830(8)$	$2.314(9)$	$3.1424(6)$	$177.2(13)$
O1-H12 $\cdots \mathrm{Cl} 1^{\text {ii }}$	$0.846(8)$	2.543 (9)	$3.3505(6)$	$159.9(13)$
Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x, y+1, z$				

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Oklahoma State Regents for Higher Education for providing funds to purchase the APEXII diffractometer. IMS was supported by a Freshman Research Scholarship from Oklahoma State University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2357).

References

Bruker (2006). APEX2 (Version 2.0) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
Chan, Y.-N., Zhao, H.-K., Wang, X.-G. \& Zhao, X.-J. (2007). Acta Cryst. E63, m70-m72.
Deng, Z.-P., Gao, S., Huo, L.-H. \& Zhao, H. (2007). Acta Cryst. C63, m225m227.
Fowles, G. W. A., Rice, D. A. \& Walton, R. A. (1969). J. Inorg. Nucl. Chem. 31, 3119-3131.
Kim, T. P., Imanakunov, B. I. \& Kazybaev, S. A. (1985). Russ. J. Inorg. Chem. 30, 1604-1607
Kim, T. P., Kazybaev, S. A., Imanakunov, B. I. \& Dzhunusov, A. (1981). Russ. J. Inorg. Chem. 26, 1672-1674.
Sheldrick, G. M. (2000). SADABS (Version 2.10) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

trans-Diaquadichloridobis(N, N-dimethylformamide- κ O) manganese(II)

I. M. Sluch and L. M. Slaughter

Comment

Kim et al. (1981) reported that $\left[\mathrm{MnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$ crystallized from solutions of MnCl_{2} in water— N, N-dimethylformamide (DMF) mixtures containing greater than 10.4% DMF by mass, with $\left[\mathrm{MnCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ becoming predominant at lower DMF concentrations. These authors characterized the complex by elemental analysis, thermal analysis, and infrared spectroscopy (Kim et al., 1985), but no structural data or other subsequent studies have been reported.

The title compound, (I), is centrosymmetric with all-trans stereochemistry about the metal center (Fig. 1), reflecting the absence of any high-field ligand that would disfavor such an arrangement. The DMF ligands are O-bound as previously proposed on the basis of infrared spectral data (Kim et al., 1981). The Mn—O distances of 2.2199 (6) $\AA\left(\mathrm{H}_{2} \mathrm{O}\right)$ and 2.1847 (5) \AA (DMF) and the $\mathrm{Mn}-\mathrm{Cl}$ distance of 2.53423 (17) \AA are normal for $\mathrm{Mn}^{\mathrm{II}}$ complexes, and the angles between coordinated atoms are in the range $90.080(17) — 92.903(17)^{\circ}$. Molecules of (I) form hydrogen-bonded chains along the crystallographic a axis via complementary pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions with $\mathrm{O} \cdots \mathrm{Cl}$ separations of 3.1424 (6) \AA (Fig. 2). Weaker complementary $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds with $\mathrm{O} \cdots \mathrm{Cl}$ distances of 3.3505 (6) \AA connect neighboring chains in the b direction. The $-\mathrm{NMe}_{2}$ groups are interdigitated with those of adjacent complexes lying along the [101] and [111] directions.

Although DMF complexes of first row transition metals are not as well known as complexes of other common donor solvents, some interesting examples of $\mathrm{Mn}^{\mathrm{II}}$ coordination polymers containing O-bound DMF have recently appeared (Chan et al., 2007; Deng et al., 2007), suggesting that DMF is a useful ligand for stabilizing Mn ${ }^{\text {II }}$.

Experimental

A sample of 10 mg of the dimethoxyethane adduct of $\mathrm{MnCl}_{2},\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}\right)\right]$ (Fowles et al., 1969) was dissolved in wet N, N-dimethylformamide, and the solution was allowed to slowly evaporate. Over the course of 3 weeks, clusters of pale pink, rodlike crystals formed. The specimen used in this study was excized from a longer rod and mounted on a glass fiber for x-ray diffraction analysis. The crystals were washed with hexanes and dried prior to melting point determination and analysis by IR spectroscopy. These characterization data matched those previously reported reported for (I) (Kim et al., 1981; Kim et al., 1985).

Refinement

The amide $\mathrm{C}-\mathrm{H}$ distance was fixed at $0.93 \AA$ and refined as riding, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. Water H atoms were located in the difference Fourier map. The $\mathrm{O}-\mathrm{H}$ distances were restrained to $0.85(1) \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$, and the other positional parameters were allowed to refine freely. Use of a longer O—H distance of 0.95 (1) \AA resulted in a better match of standard uncertainties of anisotropic displacement parameters along the Mn—O1 bond (Hirshfeld test), but this also gave higher values of $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$ and $w R\left(F^{2}\right)$, so the shorter $\mathrm{O}-\mathrm{H}$ distance restraint was chosen. Methyl H atoms were placed

supplementary materials

with idealized threefold symmetry and fixed $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$, and they were refined in a riding model with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\mathrm{eq}}(\mathrm{C})$. For C 2 , the locations of difference Fourier peaks suggested a disorder model in which two orientations of the methyl group were rotated by 60° relative to each other. Application of this disorder model resulted in improvements of 0.21% in $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$ and 0.84% in $w R\left(F^{2}\right)$, with the occupancy ratio of the two orientations refining to $0.51: 0.49$.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 50% probability level and the atomic numbering [symmetry code: (A) $1-x, 1-y, 1-z$]. Dashed lines indicate the second orientation of a rotationally disordered methyl group.

Fig. 2. Packing diagram of (I) showing part of an infinite chain of complexes linked by complementary $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding (dashed lines) along the a axis. Methyl H -atoms omitted for clarity.

trans-Diaquadichloridobis(N, N-dimethylformamide- $\backslash \kappa O$)manganese(II)

Crystal data

$\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=308.06$
Triclinic, $P \mathrm{I}$
Hall symbol: -P 1
$a=6.1224$ (1) \AA
$b=6.8021(1) \AA$
$c=8.7056(1) \AA$
$\alpha=110.539(1)^{\circ}$
$\beta=105.431(1)^{\circ}$
$\gamma=94.732(1)^{\circ}$
$V=320.992(8) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& F_{000}=159 \\
& D_{\mathrm{x}}=1.594 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point }=362-364 \mathrm{~K} \\
& \text { Mo } \mathrm{K} \mathrm{\alpha} \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 5092 \text { reflections } \\
& \theta=2.6-40.4^{\circ} \\
& \mu=1.44 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, light pink } \\
& 0.48 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX II CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 0.75 pixels mm^{-1}
$T=298(2) \mathrm{K}$
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.534, T_{\text {max }}=0.746$
10584 measured reflections

2435 independent reflections
2300 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=33.1^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.051$
$S=1.06$
2435 reflections
79 parameters

2 restraints
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0303 P)^{2}+0.0323 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.19$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Restraints used: the $\mathrm{O} 1-\mathrm{H} 11$ and $\mathrm{O} 1-\mathrm{H} 12$ distances were restrained to 0.85 (1) \AA.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Mn1	0.5000	0.5000	0.5000	$0.02292(5)$	
C11	$0.73368(3)$	$0.20741(3)$	$0.43902(2)$	$0.03151(5)$	
O1	$0.72383(10)$	$0.71285(10)$	$0.43607(9)$	$0.03632(13)$	
H11	$0.8667(15)$	$0.729(2)$	$0.4685(17)$	0.054^{*}	
H12	$0.691(2)$	$0.8319(16)$	$0.4380(17)$	0.054^{*}	
O2	$0.71479(10)$	$0.63553(10)$	$0.77117(7)$	$0.03374(12)$	
C1	$0.92887(12)$	$0.66040(12)$	$0.82274(9)$	$0.02796(13)$	
H1	1.0043	0.6194	0.7402	0.034^{*}	
N1	$1.05599(11)$	$0.74139(10)$	$0.98734(8)$	$0.02987(12)$	
C2	$0.94941(19)$	$0.80913(15)$	$1.12328(10)$	$0.04124(18)$	
H21	0.8188	0.8697	1.0868	0.062^{*}	$0.494(15)$
H22	1.0597	0.9145	1.2264	0.062^{*}	$0.494(15)$
H23	0.8994	0.6879	1.1463	0.062^{*}	$0.494(15)$
H24	1.0332	0.7783	1.2196	0.062^{*}	$0.506(15)$
H25	0.7922	0.7336	1.0800	0.062^{*}	$0.506(15)$
H26	0.9525	0.9602	1.1600	0.062^{*}	$0.506(15)$
C3	$1.30653(16)$	$0.76926(19)$	$1.03786(14)$	$0.0492(2)$	
H31	1.3537	0.7207	0.9362	0.074^{*}	

H 32	1.3573	0.6875	1.1062	0.074^{*}
H 33	1.3739	0.9179	1.1045	0.074^{*}

Atomic displacement parameters $\left(\lambda^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.01952(7)$	$0.02749(8)$	$0.01909(7)$	$0.00350(5)$	$0.00352(4)$	$0.00810(5)$
C11	$0.02622(8)$	$0.03127(9)$	$0.03567(9)$	$0.00895(6)$	$0.00892(6)$	$0.01130(7)$
O1	$0.0272(3)$	$0.0381(3)$	$0.0503(3)$	$0.0061(2)$	$0.0137(2)$	$0.0240(3)$
O2	$0.0293(2)$	$0.0414(3)$	$0.0225(2)$	$0.0053(2)$	$0.00112(18)$	$0.0085(2)$
C1	$0.0300(3)$	$0.0289(3)$	$0.0214(3)$	$0.0024(2)$	$0.0043(2)$	$0.0091(2)$
N1	$0.0294(3)$	$0.0306(3)$	$0.0227(2)$	$0.0009(2)$	$0.0000(2)$	$0.0096(2)$
C2	$0.0568(5)$	$0.0390(4)$	$0.0228(3)$	$0.0113(4)$	$0.0092(3)$	$0.0082(3)$
C3	$0.0294(4)$	$0.0592(6)$	$0.0472(5)$	$-0.0032(4)$	$-0.0046(3)$	$0.0217(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Mn} 1-\mathrm{O} 2{ }^{\text {i }}$	2.1847 (5)	N1-C2	1.4549 (12)
$\mathrm{Mn} 1-\mathrm{O} 2$	2.1847 (5)	N1-C3	1.4549 (11)
Mn1-O1	2.2199 (6)	C2-H21	0.9600
$\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}$	2.2199 (6)	C2-H22	0.9600
$\mathrm{Mn} 1-\mathrm{Cl1}{ }^{\text {i }}$	2.53419 (17)	$\mathrm{C} 2-\mathrm{H} 23$	0.9600
$\mathrm{Mn} 1-\mathrm{Cl1}$	2.53423 (17)	$\mathrm{C} 2-\mathrm{H} 24$	0.9600
O1-H11	0.830 (8)	C2-H25	0.9600
$\mathrm{O} 1-\mathrm{H} 12$	0.846 (8)	C2-H26	0.9600
$\mathrm{O} 2-\mathrm{C} 1$	1.2430 (9)	C3-H31	0.9600
$\mathrm{C} 1-\mathrm{N} 1$	1.3208 (9)	C3-H32	0.9600
C1-H1	0.9300	C3-H33	0.9600
$\mathrm{O} 2 \mathrm{i}-\mathrm{Mn} 1-\mathrm{O} 2$	180.0	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 22$	109.5
$\mathrm{O} 2 \mathrm{i}-\mathrm{Mn} 1-\mathrm{O} 1$	88.54 (2)	H21-C2-H22	109.5
$\mathrm{O} 2-\mathrm{Mn1}-\mathrm{O} 1$	91.46 (2)	N1-C2-H23	109.5
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1^{\mathrm{i}}$	91.46 (2)	H21-C2-H23	109.5
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 1^{\mathrm{i}}$	88.54 (2)	H22-C2-H23	109.5
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}$	180.0	N1-C2-H24	109.5
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{Cl1}{ }^{\text {i }}$	89.920 (17)	H21-C2-H24	141.1
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{Cl1}{ }^{\mathrm{i}}$	90.081 (17)	H22-C2-H24	56.3
$\mathrm{O} 1-\mathrm{Mnl}-\mathrm{Cl1}{ }^{\text {i }}$	87.097 (17)	H23-C2-H24	56.3
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Cl1}{ }^{\text {i }}$	92.903 (17)	N1-C2-H25	109.5
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Cl} 1$	90.080 (17)	H21-C2-H25	56.3
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{Cl} 1$	89.920 (17)	H22-C2-H25	141.1
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{Cl} 1$	92.903 (17)	H23-C2-H25	56.3
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Cl} 1$	87.096 (17)	H24-C2-H25	109.5
$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{Cl1}$	180.000 (6)	N1-C2-H26	109.5
$\mathrm{Mn1}-\mathrm{O} 1-\mathrm{H} 11$	122.5 (10)	H21-C2-H26	56.3
$\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{H} 12$	119.7 (10)	H22-C2-H26	56.3
$\mathrm{H} 11-\mathrm{O} 1-\mathrm{H} 12$	107.3 (13)	H23-C2-H26	141.1

sup-4

$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Mn} 1$	$124.95(5)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 1$	$124.15(7)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 1$	117.9
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	117.9
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$120.85(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$121.02(8)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$118.12(7)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 21$	109.5
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1$	$-48.73(7)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1$	$131.27(7)$
$\mathrm{Cl} 1-\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1$	$-135.83(6)$
$\mathrm{Cl} 1-\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1$	$44.17(6)$

$\mathrm{H} 24-\mathrm{C} 2-\mathrm{H} 26$	109.5
$\mathrm{H} 25-\mathrm{C} 2-\mathrm{H} 26$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 31$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 32$	109.5
$\mathrm{H} 31-\mathrm{C} 3-\mathrm{H} 32$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 33$	109.5
$\mathrm{H} 31-\mathrm{C} 3-\mathrm{H} 33$	109.5
$\mathrm{H} 32-\mathrm{C} 3-\mathrm{H} 33$	109.5
$\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 1$	$-179.54(5)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$-0.08(12)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$-178.88(8)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 11 \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	$0.830(8)$	$2.314(9)$	$3.1424(6)$	$177.2(13)$
$\mathrm{O} 1 — \mathrm{H} 12 \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	$0.846(8)$	$2.543(9)$	$3.3505(6)$	$159.9(13)$

Symmetry codes: (ii) $-x+2,-y+1,-z+1$; (iii) $x, y+1, z$.

supplementary materials

Fig. 1

Fig. 2

